Ecological genetics of big sagebrush

Bryce A. Richardson¹, Joshua Udall², Nancy L. Shaw³ ¹USDA Forest Service, RMRS, Shrub Sciences Lab, Provo, UT ² Dept. of Plant and Wildlife Sciences, Brigham Young University, Provo, UT ³ USDA Forest Service, RMRS, Boise, ID

Big sagebrush morphological variation

tridentata(2X)

Polyploid formation

Genetics review of big sagebrush

- Diploid ssp *tridentata* and *vaseyana* occupy different ecotypes
- Hybridize in ecotones, diploid hybrids are adapted to narrow ecotones, but not parental ecotypes (McArthur et al. 1981, 1988, Wang et al. 1997)
- Polyploids (tetraploids), including ssp. *wyomingensis,* are probably more abundant on the landscape than diploids
 - Approximately half of all sampled plants were tetraploids (McArthur and Sanderson 1999)

- Elucidate phylogenetic relationships among subspecies
- Discern the origins of subspecies *wyomingensis* and other tetraploids
- Compare morphological characteristics to phylogenetic relationships

Methods

- Sequences obtain through next-generation transcriptome sequencing (Bajgain et al. 2011)
- ♦ 25 putative genes associated with secondary metabolite pathway were sequenced (~12,000 bp of data)
- 329 samples sequenced from 49 collection sites (7 samples per site)
- Phylogenetic analyses: Bayesian coalescence and neighbor-net network
- Genome size: flow cytometery (3 individual per site)

A. tridentata polyploid complex

Summary

- Big sagebrush represents a polyploid complex in which tetraploids, including *wyomingensis*, have formed numerous times
- Tetraploids appear to be of local or regional origins
- Under a genetic and evolutionary context, *wyomingensis* is not a subspecies
- Morphology and UV fluorescence is diagnostic for diploids, but not for tetraploids

Future research

- What are the geographic distributions of tetraploids lineages?
- Are these lineages adapted to particular environments?
- Is there interspecific hybridization with *A. nova* or other sagebrush species?
- How frequent do polyploids develop? Is it in response to environmental stimuli?

E-nose technology

Applications of E-nose technology for the sagebrushes

- E-nose (Electronic nose) is a device that can differentiate different volatile chemicals
- Polymer coated membranes react uniquely to different volatiles
- An electrical current is past over the membrane.
 Changes in conductance, caused by the way the polymer reacts to the volatile are recorded

- Could rapidly detect aromatic differences between big sagebrush or between sagebrush species
- Works on seeds or leaves
- A means of certifying seed to subspecies or ecotype?

Preliminary results

Taxa	Таха	Seed Volatile QF	Leaf Volatile QF
A.t. tridentata	A.t. vaseyana	2.83	3.259
tridentata	wyomingensis	1.207	2.307
vaseyana	wyomingensis	2.291	2.065
A. arbuscula	A. nova	-	11.035
A. arbuscula	A. tridentata ssp.	-	5.019-6.678
A. nova	A. tridentata ssp	-	4.756-5.861

Values > 2.0 are significantly different (p < 0.05)

- Big sagebrush: Prabin Bajgain, Justin Page, Stewart Sanderson, numerous agency volunteers
- E-nose technology: A. Dan Wilson
- Funding: GBNPSIP, National Fire Plant, Western Forest Transcriptome Survey