Restoring Native Plants to Crested Wheatgrass Stands in Eastern Oregon

Jane Mangold and Valerie Fansler
Montana State University, Bozeman, MT
Pike San Isabel National Forest, Colorado Springs, CO
Crested Wheatgrass

- Introduced to North America in 1898
 - Used to:
 - Stabilize soils
 - Livestock forage
 - Prevent weed invasion
 - Reduce wildfire hazard
- Occupies more than 5 million hectares in western U.S.

(Pellant and Lysne 2005)
Crested Wheatgrass Legacy

- Dominates seed bank and limits growth of native species
- Native species recruitment unlikely
- To re-establish diversity:
 - Suppression of crested wheatgrass plants and propagules
 - Deliberate introduction of desired species

Benefits of Restoring Natives

• Improves resource capture and cycling
• Increases resilience and resistance to disturbance
• Improves wildlife habitat (esp. sagebrush obligate species)

Objective

• Test various strategies for restoring native plant species to crested wheatgrass-dominated rangeland
Hypotheses

• Suppression treatments would decrease crested wheatgrass density and cover
• Suppression treatment and revegetation would interact to increase native species density
Study Site

• 80 km south of Burns, OR
• Malheur National Wildlife Refuge
• Seeded to crested wheatgrass in 1981 following wildfire
Crested Wheatgrass Suppression Treatments

• Mechanical
 – One pass with disk (1M)
 – Two passes with disk (2M)

• Herbicide (glyphosate)
 – Low rate (LH)
 • 0.25X recommended rate
 – High rate (HH)
 • 1.0X recommended rate

• Undisturbed (UD)
Revegetation Treatments

• Seeded
• Non-seeded

• Truax™ Rough Rider no-till drill
• Cool season and fluffy seed boxes
• 31 Oct. – 1 Nov. 2005 (Trial 1)
• 30-31 Oct. 2006 (Trial 2)
Native Seed Mix

• 4 grasses
 – bluebunch wheatgrass \((L)\)
 – Sandberg’s bluegrass \((S)\)
 – Indian ricegrass \((L)\)
 – Squirreltail \((L)\)

• 3 forbs
 – western yarrow \((S)\)
 – Lewis flax \((L)\)
 – Munro globemallow \((L)\)

• 3 shrubs
 – Wyoming big sagebrush \((S)\)
 – four-wing saltbush \((L)\)
 – white-stemmed rabbitbrush \((S)\)
Experimental Design

- Randomized block, split-split-plot
- Whole-plot = suppression treatment (30m x 140m)
- Split-plot = seeding treatment (30m x 70m)
- Split-split-plot = year (2 trials)
- 5 replications
Sampling

• Density and canopy cover
 – Crested wheatgrass
 – Other perennial species
 – Cheatgrass

• Density
 – Seeded species

• 50, 0.25m² frames/plot

• Trial 1
 – 2006-2008

• Trial 2
 – 2007-2008
Data Analysis

• Mixed effect split-split plot analysis
 – Fixed effects = suppression treatment, seeding treatment, year
 – Random effects = block

• Means separated using Tukey’s Honestly Significant Difference (HSD)

(Ramsey and Schafer 2002)
Treatment x Year Effect on Crested Wheatgrass Density - Trial 1

- **HH** = high rate herbicide
- **2M** = mechanical, 2 passes
- **LH** = low rate herbicide
- **1M** = mechanical, 1 pass
- **UD** = undisturbed

HSDa = 1.1
HSDb = 1.5
$p < 0.01$
Treatment Effect on Crested Wheatgrass Density - Trial 2

HH = high rate herbicide
2M = mechanical, 2 passes
LH = low rate herbicide
1M = mechanical, 1 pass
UD = undisturbed

HSD = 1.7
p = 0.01
Treatment x Year Effect on Crested Wheatgrass Cover - Trial 1

- **HH** = high rate herbicide
- **2M** = mechanical, 2 passes
- **LH** = low rate herbicide
- **1M** = mechanical, 1 pass
- **UD** = undisturbed

HSDa = 2.1
HSDb = 2.8
p < 0.01
Treatment x Year Effect on Seeded Species Density – Trial 1

- **HH** = high rate herbicide
- **2M** = mechanical, 2 passes
- **LH** = low rate herbicide
- **1M** = mechanical, 1 pass
- **UD** = undisturbed

HSDa = 4.9
HSDb = 5.0
p < 0.01
Year Effect on Seeded Species Density – Trial 2

HSD = 1.7
p < 0.01
Conclusions—Eastern Oregon

• Suppression treatments not effective
• Mechanical suppression treatments increased crested wheatgrass
• Seeded species
 – High initial establishment in spite of poor suppression
 – Decreased over time
Implications

• Successive suppression treatments prior to seeding natives
• Subsequent management to favor persistence of native species
Acknowledgements

- USDA-Agricultural Research Service/EOARC
- USDA-FS-Rocky Mountain Research Station
- USFWS-Malheur National Wildlife Refuge
- USDA-NRCS
- Jim Truax
- GBNPSIP
- Colleagues in Idaho, Nevada, and Utah
Questions